RingBFT: Resilient Consensus over Sharded Ring Topology

Sajjad Rahnama

Suyash Gupta

Rohan Sogani

Dhruy Krishnan

Mohammad Sadoghi

Exploratory Systems Lab University of California Davis

March, 2022

Chronology of Consensus

GeoBFT (Global Consensus, VLDB'20)

RCC (Parallel Consensus, ICDE'21)

PoE (Speculative Consensus, EDBT'21)

PBFT

Sharding Solution

Fully Replicated System

Sharded System

Sharded Consensus

- Single Shard Consensus: Cheap and Parallelized
- Multi Shard Consensus: Main Challenge, Expensive Focus of This work

Sharper [Sigmod'21]

Sharper [Sigmod'21]

5

The Overlooked Problem

Our Work: RingBFT

Go around the Ring: No All to All Communication

7

RingBFT Cross-Shard Consensus Protocol

Diving into RingBFT

RingBFT Cross-shard Consensus Flow

Linear Forward Communication

10

Recovery: Local Timer

ResilientDB Expolab 11

Recovery: Transmit Timer

No Communication

Recovery: Remote Timer

Partial Communication

Not Enough Certificates Remote Timer Expires Remote View Change

Interdependent Transactions

NesttRoundsCEnsenses

Open Sourced at: <u>https://resilientdb.com</u>

ResilientDB Architecture

ResilientDB Runtime

RingBFT Evaluation on ResilientDB

- Scale up to 540 replicas on Google Cloud
- **16-core** machines with **16 GB memory**.
- Yahoo Cloud Serving Benchmark (YCSB).
- Up to 15 regions, 28 replicas per region.
- Shuffled shards to prevent shards proximity.

	Country/City	Region
0	oregon	us-west1
1	iowa	us-central1
2	montreal	northamerica-northeast1
3	netherland	europe-west4
4	taiwan	asia-east1
5	sydney	australia-southeast1
6	singapore	asia-southeast1
7	south-carolina	us-east1
8	north-virginia	us-east4
9	los angeles	us-west2
10	las vegas	us-west4
11	london	europe-west2
12	belgium	europe-west1
13	tokyo	asia-northeast1
14	hong-kong	asia-east2

Scalability: Impact of shards

Scalability: Impact of X-shard workload rate

ResilientDB Roadmap

PBFT

Thanks!

